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Appendix F

The Wright Functions

In this appendix we provide a survey of the high transcendental func-

tions known in the literature as Wright functions. We devote partic-

ular attention for two functions of the Wright type, which, in virtue

of their role in applications of fractional calculus, we have called aux-

iliary functions. We also discuss their relevance in probability theory

showing their connections with Lévy stable distributions. At the end,

we add some historical and bibliographical notes.

F.1 The Wright function Wλ,µ(z)

The Wright function, that we denote by Wλ,µ(z), is so named in

honour of E. Maitland Wright, the eminent British mathematician,

who introduced and investigated this function in a series of notes

starting from 1933 in the framework of the theory of partitions, see

[Wright (1933); (1935a); (1935b)]. The function is defined by the

series representation, convergent in the whole complex plane,

Wλ,µ(z) :=
∞∑
n=0

zn

n! Γ(λn+ µ)
, λ > −1 , µ ∈ C , (F.1)

so Wλ,µ(z) is an entire function. Originally, Wright assumed λ > 0,

and, only in 1940, he considered −1 < λ < 0, see [Wright (1940)].

We note that in the handbook of the Bateman Project [Erdélyi et al.

(1953-1955)], Vol. 3, Ch. 18, presumably for a misprint, λ is re-

stricted to be non-negative. We distinguish the Wright functions in

first kind (λ ≥ 0) and second kind (−1 < λ < 0).

237
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The integral representation. The integral representation reads

Wλ,µ(z) =
1

2πi

∫
Ha

eσ + zσ−λ dσ

σµ
, λ > −1 , µ ∈ C , (F.2)

where Ha denotes the Hankel path. The equivalence between the se-

ries and integral representations is easily proven by using the Hankel

formula for the Gamma function, see (A.19),

1

Γ(ζ)
=

1

2πi

∫
Ha

eu u−ζ du , ζ ∈ C ,

and performing a term-by-term integration. The exchange between

series and integral is legitimate by the uniform convergence of the

series, being Wλ,µ(z) an entire function. We have:

Wλ,µ(z) =
1

2πi

∫
Ha

eσ + zσ−λ dσ

σµ
=

1

2πi

∫
Ha

eσ

[ ∞∑
n=0

zn

n!
σ−λn

]
dσ

σµ

=

∞∑
n=0

zn

n!

[
1

2πi

∫
Ha

eσ σ−λn−µ dσ

]
=

∞∑
n=0

zn

n! Γ[λn+ µ]
.

Furthermore, it is possible to prove that the Wright function is entire

of order 1/(1 + λ) hence of exponential type only if λ ≥ 0. The case

λ = 0 is trivial since W0,µ(z) = e z/Γ(µ) .

Asymptotic expansions. For the detailed asymptotic analysis in

the whole complex plane for the Wright functions, the interested

reader is referred to [Wong and Zhao (1999a); (1999b)]. These au-

thors have provided asymptotic expansions of the Wright functions

of the first and second kind following a new method for smoothing

Stokes’ discontinuities.

As a matter of fact, the second kind is the most interesting for

us. By setting λ = −ν ∈ (−1, 0) , we recall the asymptotic expansion

originally obtained by Wright himself, that is valid in a suitable sector

about the negative real axis as |z| → ∞,

W−ν,µ(z) = Y 1/2−µ e−Y

[
M−1∑
m=0

Am Y
−m +O(|Y |−M )

]
,

Y = Y (z) = (1− ν) (−νν z)1/(1−ν) ,

(F.3)

where the Am are certain real numbers.
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Generalization of the Bessel functions. The Wright functions

turn out to be related to the well-known Bessel functions Jν and Iν
for λ = 1 and µ = ν+ 1. In fact, by using the series definitions (B.1)

and (B.31) for the Bessel functions and the series definitions (F.1)

for the Wright functions, we easily recognize the identities:

Jν(z) :=
(z

2

)ν ∞∑
n=0

(−1)n(z/2)2n

n! Γ(n+ +ν + 1)
=
(z

2

)ν
W1,ν+1

(
−z

2

4

)
,

W1,ν+1 (−z) :=
∞∑
n=0

(−1)nzn

n! Γ(n+ ν + 1)
=z−ν/2 Jν(2z1/2).

(F.4)

and

Iν(z) :=
(z

2

)ν ∞∑
n=0

(z/2)2n

n! Γ(n+ +ν + 1)
=
(z

2

)ν
W1,ν+1

(
z2

4

)
,

W1,ν+1 (z) :=
∞∑
n=0

zn

n! Γ(n+ ν + 1)
=z−ν/2 Iν(2z1/2) .

(F.5)

As far as the standard Bessel functions Jν are concerned, the fol-

lowing observations are worth noting. We first note that the Wright

function W1,ν+1(−z) reduces to the entire function Cν(z) known as

Bessel-Clifford function introduced Eq. (B.4). Then, in view of the

first equation in (F.4) some authors refer to the Wright function as

the Wright generalized Bessel function (misnamed also as the Bessel-

Maitland function) and introduce the notation for λ ≥ 0, see e.g.
[Kiryakova (1994)], p. 336,

J (λ)
ν (z) :=

(z
2

)ν ∞∑
n=0

(−1)n(z/2)2n

n!Γ(λn+ ν + 1)
=
(z

2

)ν
Wλ,ν+1

(
−z

2

4

)
. (F.6)

Similar remarks can be extended to the modified Bessel functions Iν .

Recurrence relations. Hereafter, we quote some relevant recur-

rence relations from [Erdélyi et al. (1953-1954)], Vol. 3, Ch. 18:

λzWλ,λ+µ(z) = Wλ,µ−1(z) + (1− µ)Wλ,µ(z) , (F.7)

d

dz
Wλ,µ(z) = Wλ,λ+µ(z) . (F.8)

We note that these relations can easily be derived from (F.1).
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F.2 The auxiliary functions Fν(z) and Mν(z) in C

In his earliest analysis of the time-fractional diffusion-wave equation
[Mainardi (1994a)], the author introduced the two auxiliary functions

of the Wright type:

Fν(z) := W−ν,0(−z) , 0 < ν < 1 , (F.9)

and

Mν(z) := W−ν,1−ν(−z) , 0 < ν < 1 , (F.10)

interrelated through

Fν(z) = ν zMν(z) . (F.11)

As it is shown in Chapter 6, the motivation was based on the inver-

sion of certain Laplace transforms in order to obtain the fundamental

solutions of the fractional diffusion-wave equation in the space-time

domain. Here we will devote particular attention to the mathemati-

cal properties of these functions limiting at the essential the discus-

sion for the general Wright functions. The reader is referred to the

Notes for some historical and bibliographical details.

Series representations. The series representations of our auxil-

iary functions are derived from those of Wλ,µ(z). We have:

Fν(z) :=
∞∑
n=1

(−z)n

n! Γ(−νn)

=
1

π

∞∑
n=1

(−z)n−1

n!
Γ(νn+ 1) sin(πνn) ,

(F.12)

and

Mν(z) :=

∞∑
n=0

(−z)n

n! Γ[−νn+ (1− ν)]

=
1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) ,

(F.13)

where we have used the well-known reflection formula for the Gamma

function, see (A.13),

Γ(ζ) Γ(1− ζ) = π/ sin πζ .

We note that Fν(0) = 0 , Mν(0) = 1/Γ(1− ν) and that the relation

(F.11), consistent with the recurrence relation (F.7), can be derived

from (F.12)-(F.13) arranging the terms of the series.
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The integral representations. The integral representations of

our auxiliary functions are derived from those of Wλ,µ(z). We have:

Fν(z) :=
1

2πi

∫
Ha

eσ − zσ
ν
dσ , z ∈ C , 0 < ν < 1 , (F.14)

Mν(z) :=
1

2πi

∫
Ha

eσ − zσ
ν dσ

σ1−ν , z ∈ C , 0 < ν < 1 . (F.15)

We note that the relation (F.11) can be obtained directly from (F.14)

and (F.15) with an integration by parts, i.e.∫
Ha

eσ − zσ
ν dσ

σ1−ν =

∫
Ha

eσ
(
− 1

νz

d

dσ
e−zσ

ν
)
dσ

=
1

νz

∫
Ha

eσ − zσ
ν
dσ .

The passage from the series representation to the integral representa-

tion and vice-versa for our auxiliary functions can be derived in a way

similar to that adopted for the general Wright function, that is by ex-

panding in positive powers of z the exponential function exp(−z σν),

exchanging the order between the series and the integral and using

the Hankel representation of the reciprocal of the Gamma function,

see (A.19a).

Since the radius of convergence of the power series in (F.12)-(F.13)

can be proven to be infinite for 0 < ν < 1, our auxiliary functions

turn out to be entire in z and therefore the exchange between the

series and the integral is legitimate7.

Special cases. Explicit expressions of Fν(z) and Mν(z) in terms

of known functions are expected for some particular values of ν.

In [Mainardi and Tomirotti (1995)] the authors have shown that

for ν = 1/q , where q ≥ 2 is a positive integer, the auxiliary functions

can be expressed as a sum of (q − 1) simpler entire functions.

In the particular cases q = 2 and q = 3 we find from (F.13),

M1/2(z)=
1√
π

∞∑
m=0

(−1)m
(

1

2

)
m

z2m

(2m)!
=

1√
π

exp
(
− z2/4

)
, (F.16)

7The author in [Mainardi (1994a)] proved these properties independently from
[Wright (1940)], because at that time he was aware only of [Erdélyi et al. (1953-
1955)] where λ was restricted to be non-negative.
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and

M1/3(z) =
1

Γ(2/3)

∞∑
m=0

(
1

3

)
m

z3m

(3m)!
− 1

Γ(1/3)

∞∑
m=0

(
2

3

)
m

z3m+1

(3m+ 1)!

(F.17)

= 32/3 Ai
(
z/31/3

)
,

where Ai denotes the Airy function defined in Appendix B (Section

B.4).

Furthermore, it can be proved that M1/q(z) satisfies the differen-

tial equation of order q − 1

dq−1

dzq−1
M1/q(z) +

(−1)q

q
zM1/q(z) = 0 , (F.18)

subjected to the q−1 initial conditions at z = 0, derived from (F.13),

M
(h)
1/q(0) =

(−1)h

π
Γ[(h+ 1)/q] sin[π (h+ 1)/q] , (F.19)

with h = 0, 1, . . . q − 2.

We note that, for q ≥ 4 , Eq. (F.18) is akin to the hyper-Airy dif-

ferential equation of order q−1 , see e.g. [Bender and Orszag (1987)].

Consequently, in view of the above considerations, the auxiliary func-

tion Mν(z) could be referred to as the generalized hyper-Airy func-

tion.

F.3 The auxiliary functions Fν(x) and Mν(x) in IR

We point out that the most relevant applications of Wright functions,

especially our auxiliary functions, are when the independent variable

is real. More precisely, in this Section we will consider functions of

the variable x with x ∈ IR+ or x ∈ IR.

When the support is all of IR, we agree to consider even functions,

that is, functions defined in a symmetric way. In this case, to stress

the symmetry property of the function, the independent variable may

be denoted by |x|.
We point out that in the limit ν → 1− the function Mν(x), for

x ∈ IR+, tends to the Dirac generalized function δ(x− 1).
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The asymptotic representation of Mν(x). Let us first point

out the asymptotic behaviour of the function Mν(x) as x → +∞.

Choosing as a variable x/ν rather than x, the computation of the

asymptotic representation by the saddle-point approximation yields,

see [Mainardi and Tomirotti (1995)],

Mν(x/ν) ∼ a(ν)x(ν − 1/2)/(1− ν) exp
[
−b(ν)x1/(1− ν)

]
, (F.20)

where

a(ν) =
1√

2π (1− ν)
> 0 , b(ν) =

1− ν
ν

> 0 . (F.21)

The above evaluation is consistent with the first term in Wright’s

asymptotic expansion (F.3) after having used the definition (F.10).

Plots of Mν(x). We show the plots of our auxiliary functions on

the real axis for some rational values of the parameter ν.

Fig. F.1 Plots of the Wright type function Mν(x) with ν = 0, 1/8, 1/4, 3/8, 1/2
for −5 ≤ x ≤ 5; top: linear scale, bottom: logarithmic scale.
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To gain more insight of the effect of the parameter itself on the

behaviour close to and far from the origin, we will adopt both linear

and logarithmic scale for the ordinates.

In Figs. F.1 and F.2 we compare the plots of the Mν(x) Wright

auxiliary functions in −5 ≤ x ≤ 5 for some rational values in the

ranges ν ∈ [0, 1/2] and ν ∈ [1/2, 1], respectively. Thus in Fig. F.1 we

see the transition from exp(−|x|) for ν = 0 to 1/
√
π exp(−x2) for ν =

1/2, whereas in Fig F.2 we see the transition from 1/
√
π exp(−x2)

to the delta function δ(1− |x|) for ν = 1.

Fig. F.2 Plots of the Wright type function Mν(x) with ν = 1/2 , 5/8 , 3/4 , 1 for
−5 ≤ x ≤ 5: top: linear scale; bottom: logarithmic scale.

In plotting Mν(x) at fixed ν for sufficiently large x the asymptotic

representation (F.20)-(F.21) is very useful because, as x increases,

the numerical convergence of the series in (F.13) becomes poor and

poor up to being completely inefficient. Henceforth, the matching

between the series and the asymptotic representation is relevant.
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However, as ν → 1−, the plotting remains a very difficult task

because of the high peak arising around x = ±1. In this case the

saddle-point method, improved as in [Kreis and Pipkin (1986)], can

successfully be used to visualize some structure in the peak while it

tends to the Dirac delta function, see also [Mainardi and Tomirotti

(1997)] and Chapter 6 for a related wave-propagation problem. With

Pipkin’s method we are able to get the desired matching with the

series representation just in the region around the maximum x ≈ 1,

as shown in Fig. F.3. Here we exhibit the significant plots of the

auxiliary function Mν(x) with ν = 1 − ε for ε = 0.01 and ε = 0.001

and we compare the series representation (100 terms, dashed line),

the saddle-point representation (dashed-dotted line), and the Pipkin

representation (continuous line).

Fig. F.3 Comparison of the representations of Mν(x) with ν = 1− ε around the
maximum x ≈ 1 obtained by Pipkin’s method (continuous line), 100 terms-series
(dashed line) and the saddle-point method (dashed-dotted line). Left:ε = 0.01;
Right: ε = 0.001

F.4 The Laplace transform pairs

Let us write the Laplace transform of the Wright function as

Wλ,µ(±r) ÷ L [Wλ,µ(±r); s] :=

∫ ∞
0

e−s r Wλ,µ(±r) dr ,

where r denotes a non-negative real variable, i.e. 0 ≤ r < +∞ , and

s is the Laplace complex parameter.
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When λ > 0 the series representation of the Wright function

can be transformed term-by-term. In fact, for a known theorem

of the theory of the Laplace transforms, see e.g. [Doetsch (1974)],

the Laplace transform of an entire function of exponential type can

be obtained by transforming term-by-term the Taylor expansion of

the original function around the origin. In this case the resulting

Laplace transform turns out to be analytic and vanishing at infin-

ity. As a consequence, we obtain the Laplace transform pair for the

Wright function of the first kind as

Wλ,µ(±r) ÷ 1

s
Eλ,µ

(
±1

s

)
, λ > 0 , |s| > ρ > 0 , (F.22)

where Eλ,µ denotes the generalized Mittag-Leffler function in two

parameters, and ρ is an arbitrary positive number. The proof is

straightforward, noting that
∞∑
n=0

(±r)n

n! Γ(λn+ µ)
÷ 1

s

∞∑
n=0

(±1/s)n

Γ(λn+ µ)
,

and recalling the series representation (E.22) of the generalized

Mittag-Leffler function,

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
, α > 0 , z ∈ C .

For λ→ 0+ Eq. (F.22) provides the Laplace transform pair

W0+,µ(±r) :=
e±r

Γ(µ)
÷ 1

Γ(µ)

1

s∓ 1
.

This means

W0+,µ(±r) ÷ 1

s
E0,µ

(
±1

s

)
=

1

Γ(µ)s
E0

(
±1

s

)
, |s| > 1 , (F.23)

where, in order to be consistent with (F.22), we have formally put,

according to (E.2),

E0,µ(z) :=
∞∑
n=0

zn

Γ(µ)
=

1

Γ(µ)
E0(z) =

1

Γ(µ)

1

1− z
, |z| < 1 .

We recognize that in this limitig case the Laplace transform exhibits

a simple pole at s = ±1 while for λ > 0 it exhibits an essential

singularity at s = 0.
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For −1 < λ < 0 the Wright function turns out to be an entire

function of order greater than 1, so that the term-by-term trans-

formation representation is no longer legitimate. Thus, for Wright

functions of the second kind, care is required in establishing the exis-

tence of the Laplace transform, which necessarily must tend to zero

as s→∞ in its half-plane of convergence.

For the sake of convenience we first derive the Laplace transform

for the special case of Mν(r) ; the exponential decay as r → ∞ of

the original function provided by (F.20) ensures the existence of the

image function. From the integral representation (F.13) of the Mν

function we obtain

Mν(r) ÷ 1

2πi

∫ ∞
0

e−s r
[∫

Ha
eσ − rσ

ν dσ

σ1−ν

]
dr

=
1

2πi

∫
Ha

eσ σν−1

[∫ ∞
0

e−r(s+ σν) dr

]
dσ =

1

2πi

∫
Ha

eσ σν−1

σν + s
dσ .

Then, by recalling the integral representation (E.14) of the Mittag-

Leffler function,

Eα(z) =
1

2πi

∫
Ha

ζα−1 e ζ

ζα − z
dζ , α > 0 ,

we obtain the Laplace transform pair

Mν(r) ÷ Eν(−s) , 0 < ν < 1 . (F.24)

Although transforming the Taylor series of Mν(r) term-by-term

is not legitimate, this procedure yields a series of negative powers

of s that represents the asymptotic expansion of the correct Laplace

transform, Eν(−s), as s → ∞ in a sector around the positive real

axis. Indeed we get
∞∑
n=0

∫∞
0 e−sr(−r)n dr

n!Γ(−νn+ (1− ν))
=

∞∑
n=0

(−1)n

Γ(−νn+ 1− ν)

1

sn+1

=
∞∑
m=1

(−1)m−1

Γ(−νm+ 1)

1

sm
∼ Eν(−s) , s→∞ .,

consistently with the asymptotic expansion (E.16).

We note that (F.24) contains the well-known Laplace transform

pair, see e.g. [Doetsch (1974)],

M1/2(r) :=
1√
π

exp
(
− r2/4

)
÷ E1/2(−s) := exp

(
s2
)

erfc(s) ,

that is valid for all s ∈ C.
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Analogously, using the more general integral representation (F.2)

of the Wright function, we can get the Laplace transform pair for the

Wright function of the second kind. For the case λ = −ν ∈ (−1, 0),

with µ > 0 for simplicity, we obtain,

W−ν,µ(−r) ÷ Eν,µ+ν(−s) , 0 < ν < 1 . (F.25)

We note the minus sign in the argument in order to ensure the the

existence of the Laplace transform thanks to the Wright asymptotic

formula (F.3) valid in a sector about the negative real axis.

In the limit as λ→ 0− we formally obtain the Laplace transform

pair

W0−,µ(−r) :=
e−r

Γ(µ)
÷ 1

Γ(µ)

1

s+ 1
.

In order to be consistent with (F.24) we rewrite

W0−,µ(−r) ÷ E0,µ(−s) =
1

Γ(µ)
E0(−s) , |s| < 1 . (F.26)

Therefore, as λ → 0± , we note a sort of continuity in the formal

results (F.23) and (F.26) because

1

(s+ 1)
=

{
(1/s)E0(−1/s) , |s| > 1 ;

E0(−s) , |s| < 1 .
(F.27)

We now point out the relevant Laplace transform pair related to

the auxiliary functions of argument r−ν proved in [Mainardi (1994a;

(1996a); (1996b)]:

1

r
Fν (1/rν) =

ν

rν+1
Mν (1/rν) ÷ e−s

ν
, 0 < ν < 1 . (F.28)

1

ν
Fν (1/rν) =

1

rν
Mν (1/rν) ÷ e−s

ν

s1−ν , 0 < ν < 1 . (F.29)

We recall that the Laplace transform pairs in (F.28) were formerly

considered by [Pollard (1946)], who provided a rigorous proof based

on a formal result by [Humbert (1945)]. Later [Mikusiński (1959a)]

achieved a similar result based on his theory of operational calcu-

lus, and finally, albeit unaware of the previous results, [Buchen and

Mainardi (1975)] derived the result in a formal way, as stressed in
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Chapter 5. We note, however, that all these authors were not in-

formed about the Wright functions. To our actual knowledge, the for-

mer author who derived the Laplace transforms pairs (F.28)-(F.29) in

terms of Wright functions of the second kind was [Stankovich (1970)].

Hereafter, we will provide two independent proofs of (F.28) by car-

rying out the inversion of exp(−sν), either by the complex Bromwich

integral formula, see [Mainardi (1994a); Mainardi (1996a)], or by the

formal series method, see [Buchen and Mainardi (1975)]. Similarly,

we can act for the Laplace transform pair (F.29).

For the complex integral approach we deform the Bromwich path

Br into the Hankel path Ha, that is equivalent to the original path,

and we set σ = sr. Recalling (F.14)-(F.15), we get

L−1 [exp (−sν)] =
1

2πi

∫
Br

e sr − s
ν
ds =

1

2πi r

∫
Ha

eσ − (σ/r)ν dσ

=
1

r
Fν (1/rν) =

ν

rν+1
Mν (1/rν) .

For the series approach, let us expand the Laplace transform in

series of positive powers of s and formally invert term by term. Then,

after recalling (F.12)-(F.13), we obtain:

L−1 [exp (−sν)] =

∞∑
n=0

(−1)n

n!
L−1 [sνn] =

∞∑
n=1

(−1)n

n!

r−νn−1

Γ(−νn)

=
1

r
Fν (1/rν) =

ν

rν+1
Mν (1/rν) .

We note the relevance of Laplace transforms (F.24) and (F.28) in

pointing out the non-negativity of the Wright function Mν(x) and

the complete monotonicity of the Mittag-Leffler functions Eν(−x)

for x > 0 and 0 < ν < 1. In fact, since exp (−sν) denotes the

Laplace transform of a probability density (precisely, the extremal

Lévy stable density of index ν, see [Feller (1971)]) the L.H.S. of (F.28)

must be non-negative, and so also must the L.H.S of F(24). As a

matter of fact the Laplace transform pair (F.24) shows, replacing s

by x, that the spectral representation of the Mittag-Leffler function

Eν(−x) is expressed in terms of the Wright M -function Mν(r), that

is:

Eν(−x) =

∫ ∞
0

e−rxMν(r) dr , 0 < ν < 1 , x ≥ 0 . (F.30)
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We now recognize that Eq. (F.30) is consistent with Eqs. (E.19)-

(E.21) derived by [Pollard (1948)].

It is instructive to compare the spectral representation of Eν(−x)

with that of the function Eν(−tν). From Eqs. (E.56)-(E.57) we can

write

Eν(−tν) =

∫ ∞
0

e−rt Kν(r) dr , 0 < ν < 1 , t ≥ 0 , (F.31)

where the spectral function reads

Kν(r) =
1

π

rν−1 sin(νπ)

r2ν + 2 rν cos (νπ) + 1
. (F.32)

The relationship between Mν(r) and Kν(r) is worth exploring. Both

functions are non-negative, integrable and normalized in IR+, so they

can be adopted in probability theory as density functions. The nor-

malization conditions derive from Eqs (F.30) and (F.31) since∫ +∞

0
Mν(r) dr =

∫ +∞

0
Kν(r) dr = Eν(0) = 1 .

In the following section we will discuss the probability interpreta-

tion of the Mν function with support both in IR+ and in IR whereas

for Kν we note that it has been interpreted as spectral distribution

of relaxation/retardation times in the fractional Zener viscoelastic

model, see Chapter 3, Section 3.2, Fig. 3.3.

We also note that for certain renewal processes, functions of

Mittag-Leffler and Wright type can be adopted as probability distri-

butions of waiting times, as shown in [Mainardi et al. (2005)], where

such distributions are compared. We refer the interested reader to

that paper for details.

F.5 The Wright M-functions in probability

We have already recognized that the Wright M -function with sup-

port in IR+ can be interpreted as probability density function (pdf).

Consequently, extending the function in a symmetric way to all of

IR and dividing by 2 we have a symmetric pdf with support in IR.

In the former case the variable is usually a time coordinate whereas
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in the latter the variable is the absolute value of a space coordinate.

We now provide more details on these densities in the framework of

the theory of probability. As in Section F.3, we agree to denote by

x and |x| the variables in IR+ and IR, respectively.

The absolute moments of order δ. The absolute moments of

order δ > −1 of the Wright M -function in IR+ are finite and turn

out to be∫ ∞
0
xδMν(x) dx =

Γ(δ + 1)

Γ(νδ + 1)
, δ > −1 , 0 ≤ ν < 1 . (F.33)

In order to derive this fundamental result we proceed as follows,

based on the integral representation (F.15).∫ ∞
0
xδMν(x) dx =

∫ ∞
0
cδ
[

1

2πi

∫
Ha

eσ−xσ
ν dσ

σ1−ν

]
dx

=
1

2πi

∫
Ha

eσ
[∫ ∞

0
e−xσ

ν
xδ dx

]
dσ

σ1−ν

=
Γ(δ + 1)

2πi

∫
Ha

eσ

σνδ+1
dσ =

Γ(δ + 1)

Γ(νδ + 1)
.

Above we have legitimate the exchange between the two integrals

and we have used the identity∫ ∞
0

e−xσ
ν
xδ dx =

Γ(δ + 1)

(σν)δ+1
,

derived from (A.23) along with the Hankel formula (A.19a).

In particular, for δ = n ∈ IN, the above formula provides the

moments of integer order that can also be computed from the Laplace

transform pair (F.24) as follows:∫ +∞

0
xnMν(x) dx = lim

s→0
(−1)n

dn

dsn
Eν(−s) =

Γ(n+ 1)

Γ(νn+ 1)
.

Incidentally, we note that the Laplace transform pair (F.24) could

be obtained using the fundamental result (F.33) by developing in

power series the exponential kernel of the Laplace transform and

then transforming the series term-by-term.
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The characteristic function. As well-known in probability the-

ory the Fourier transform of a density provides the so-called charac-

teristic function. In our case we have:

F
[

1
2Mν(|x|)

]
:=

1

2

∫ +∞

−∞
eiκxMν(|x|) dx

=

∫ ∞
0

cos(κx)Mν(x) dx = E2ν(−κ2) .
(F.34)

For this prove it is sufficient to develop in series the cosine function

and use formula (F.33),∫ ∞
0

cos(κx)Mν(x) dx =
∞∑
n=0

(−1)n
κ2n

(2n)!

∫ ∞
0
x2nMν(x) dx

=

∞∑
n=0

(−1)n
κ2n

Γ(2νn+ 1)
= E2ν(−κ2) .

Relations with Lévy stable distributions. We find it worth-

while to discuss the relations between the Wright M -functions and

the so-called Lévy stable distributions. The term stable has been as-

signed by the French mathematician Paul Lévy, who, in the tuenties

of the last century, started a systematic research in order to general-

ize the celebrated Central Limit Theorem to probability distributions

with infinite variance. For stable distributions we can assume the fol-

lowing Definition: If two independent real random variables with

the same shape or type of distribution are combined linearly and the

distribution of the resulting random variable has the same shape, the

common distribution (or its type, more precisely) is said to be stable.

The restrictive condition of stability enabled Lévy (and then other

authors) to derive the canonic form for the characteristic function of

the densities of these distributions. Here we follow the parameter-

ization in [Feller (1952);(1971)] revisited in [Gorenflo and Mainardi

(1998b)] and in [Mainardi et al. (2001)]. Denoting by Lθα(x) a generic

stable density in IR, where α is the index of stability and and θ the

asymmetry parameter, improperly called skewness, its characteristic

function reads:

Lθα(x)÷ L̂θα(κ) = exp
[
−ψθα(κ)

]
, ψθα(κ) = |κ|α ei(signκ)θπ/2 ,

(F.35)

0 < α ≤ 2 , |θ| ≤ min {α, 2− α} .
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We note that the allowed region for the parameters α and θ turns

out to be a diamond in the plane {α, θ} with vertices in the points

(0, 0) , (1, 1) , (1,−1) , (2, 0), that we call the Feller-Takayasu dia-

mond, see Fig. F.4. For values of θ on the border of the diamond

(that is θ = ±α if 0 < α < 1, and θ = ±(2 − α) if 1 < α < 2) we

obtain the so-called extremal stable densities.

Fig. F.4 The Feller-Takayasu diamond for Lévy stable densities.

We note the symmetry relation Lθα(−x) = L−θα (x), so that a stable

density with θ = 0 is symmetric.

Stable distributions have noteworthy properties of which the in-

terested reader can be informed from the relevant existing literature.

Here-after we recall some peculiar Properties:

- The class of stable distributions possesses its own domain of attrac-

tion, see e.g. [Feller (1971)].

- Any stable density is unimodal and indeed bell-shaped, i.e. its n-th

derivative has exactly n zeros in IR, see [Gawronski (1984)].

- The stable distributions are self-similar and infinitely divisible.

These properties derive from the canonic form (F.35) through the

scaling property of the Fourier transform.

Self-similarity means

Lθα(x, t)÷ exp
[
−tψθα(κ)

]
⇐⇒ Lθα(x, t) = t−1/α Lθα(x/t1/α)] , (F.36)
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where t is a positive parameter. If t is time, then Lθα(x, t) is a spatial

density evolving on time with self-similarity.

Infinite divisibility means that for every positive integer n, the char-

acteristic function can be expressed as the nth power of some char-

acteristic function, so that any stable distribution can be expressed

as the n-fold convolution of a stable distribution of the same type.

Indeed, taking in (F.35) θ = 0, without loss of generality, we have

e−t|κ|
α

=
[
e−(t/n)|κ|α

]n
⇐⇒ L0

α(x, t) =
[
L0
α(x, t/n)

]∗n
, (F.37)

where[
L0
α(x, t/n)

]∗n
:= L0

α(x, t/n) ∗ L0
α(x, t/n) ∗ · · · ∗ L0

α(x, t/n)

is the multiple Fourier convolution in IR with n identical terms.

Only for a few particular cases, the inversion of the Fourier trans-

form in (F.35) can be carried out using standard tables, and well-

known probability distributions are obtained.

For α = 2 (so θ = 0), we recover the Gaussian pdf, that turns out

to be the only stable density with finite variance, and more generally

with finite moments of any order δ ≥ 0. In fact

L0
2(x) =

1

2
√
π

e−x
2/4 . (F.38)

All the other stable densities have finite absolute moments of order

δ ∈ [−1, α) as we will later show.

For α = 1 and |θ| < 1, we get

Lθ1(x) =
1

π

cos(θπ/2)

[x+ sin(θπ/2)]2 + [cos(θπ/2)]2
, (F.39)

which for θ = 0 includes the Cauchy-Lorentz pdf,

L0
1(x) =

1

π

1

1 + x2
. (F.40)

In the limiting cases θ = ±1 for α = 1 we obtain the singular Dirac

pdf’s

L±1
1 (x) = δ(x± 1) . (F.41)

In general, we must recall the power series expansions provided

in [Feller (1971)]. We restrict our attention to x > 0 since the eval-

uations for x < 0 can be obtained using the symmetry relation. The

convergent expansions of Lθα(x) (x > 0) turn out to be;
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for 0 < α < 1 , |θ| ≤ α :

Lθα(x) =
1

π x

∞∑
n=1

(−x−α)n
Γ(1 + nα)

n!
sin
[nπ

2
(θ − α)

]
; (F.42)

for 1 < α ≤ 2 , |θ| ≤ 2− α :

Lθα(x) =
1

π x

∞∑
n=1

(−x)n
Γ(1 + n/α)

n!
sin
[nπ

2α
(θ − α)

]
. (F.43)

From the series in (F.42) and the symmetry relation we note that

the extremal stable densities for 0 < α < 1 are unilateral, precisely

vanishing for x > 0 if θ = α, vanishing for x < 0 if θ = −α. In

particular the unilateral extremal densities L−αα (x) with 0 < α < 1

have support in IR+ and Laplace transform exp(−sα). For α = 1/2

we obtain the so-called Lévy-Smirnov pdf :

L
−1/2
1/2 (x) =

x−3/2

2
√
π

e−1/(4x) , x ≥ 0 . (F.44)

As a consequence of the convergence of the series in (F.42)-(F.43)

and of the symmetry relation we recognize that the stable pdf ’s with

1 < α ≤ 2 are entire functions, whereas with 0 < α < 1 have the

form

Lθα(x) =

{
(1/x) Φ1(x−α) for x > 0 ,

(1/|x|) Φ2(|x|−α) for x < 0 ,
(F.45)

where Φ1(z) and Φ2(z) are distinct entire functions.The case α = 1

(|θ| < 1) must be considered in the limit for α→ 1 of (F.42)-(F.43),

because the corresponding series reduce to power series akin with

geometric series in 1/x and x, respectively, with a finite radius of

convergence. The corresponding stable pdf ’s are no longer repre-

sented by entire functions, as can be noted directly from their explicit

expressions (F.39)-(F.40).

We omit to provide the asymptotic representations of the stable

densities referring the interested reader to [Mainardi et al. (2001)].

However, based on asymptotic representations, we can state as fol-

lows; for 0 < α < 2 the stable pdf ’s exhibit fat tails in such a way

that their absolute moment of order δ is finite only if −1 < δ < α.
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More precisely, one can show that for non-Gaussian, not extremal,

stable densities the asymptotic decay of the tails is

Lθα(x) = O
(
|x|−(α+1)

)
, x→ ±∞ . (F.46)

For the extremal densities with α 6= 1 this is valid only for one tail

(as |x| → ∞), the other (as |x| → ∞) being of exponential order.

For 1 < α < 2 the extremal pdf ’s are two-sided and exhibit an

exponential left tail (as x→ −∞) if θ = +(2−α) , or an exponential

right tail (as x→ +∞) if θ = −(2−α) . Consequently, the Gaussian

pdf is the unique stable density with finite variance. Furthermore,

when 0 < α ≤ 1, the first absolute moment is infinite so we should

use the median instead of the non-existent expected value in order

to characterize the corresponding pdf .

Let us also recall a relevant identity between stable densities with

index α and 1/α (a sort of reciprocity relation) pointed out in [Feller

(1971)], that is, assuming x > 0,
1

xα+1
Lθ1/α(x−α) = Lθ

∗
α (x) , 1/2 ≤ α ≤ 1 , θ∗ = α(θ+1)−1 . (F.47)

The condition 1/2 ≤ α ≤ 1 implies 1 ≤ 1/α ≤ 2. A check shows that

θ∗ falls within the prescribed range |θ∗| ≤ α if |θ| ≤ 2 − 1/α. We

leave as an exercise for the interested reader the verification of this

reciprocity relation in the limiting cases α = 1/2 and α = 1.

From a comparison between the series expansions in (F.42)-(F.43)

and in (F.12)-(F.13), we recognize that for x > 0 our auxiliary func-

tions of the Wright type are related to the extremal stable densities

as follows, see [Mainardi and Tomirotti (1997)],

L−αα (x) =
1

x
Fα(x−α) =

α

xα+1
Mα(x−α) , 0 < α < 1 , (F.48)

Lα−2
α (x) =

1

x
F1/α(x) =

1

α
M1/α(x) , 1 < α ≤ 2 . (F.49)

In Eqs. (F.48)-(F.49), for α = 1, the skewness parameter turns out

to be θ = −1, so we get the singular limit

L−1
1 (x) = M1(x) = δ(x− 1) . (F.50)

More generally, all (regular) stable densities, given in Eqs. (F.42)-

(F.43), were recognized to belong to the class of Fox H-functions,

as formerly shown by [Schneider (1986)], see also [Mainardi et al.

(2005)]. This general class of high transcendental functions is out of

the scope of this book.



April 9, 2013 18:41 World Scientific Book - 9in x 6in MAINARDI˙BOOK-FINAL

Appendix F: The Wright Functions 257

The Wright IM-function in two variables. In view of time-

fractional diffusion processes related to time-fractional diffusion

equations it is worthwhile to introduce the function in two variables

IMν(x, t) := t−νMν(xt−ν) , 0 < ν < 1 , x, t ∈ IR+ , (F.51)

which defines a spatial probability density in x evolving in time t

with self-similarity exponent H = ν. Of course for x ∈ IR we have to

consider the symmetric version obtained from (F.51) multiplying by

1/2 and replacing x by |x|.
Hereafter we provide a list of the main properties of this function,

which can be derived from the Laplace and Fourier transforms for

the corresponding Wright M -function in one variable.

From Eq. (F.29) we derive the Laplace transform of IMν(x, t)

with respect to t ∈ IR+,

L{IMν(x, t); t→ s} = sν−1 e−xs
ν
. (F.52)

From Eq. (F.24) we derive the Laplace transform of IMν(x, t) with

respect to x ∈ IR+,

L{IMν(x, t);x→ s} = Eν (−stν) . (F.53)

From Eq. (F.34) we derive the Fourier transform of IMν(|x|, t) with

respect to x ∈ IR,

F {IMν(|x|, t);x→ κ} = 2E2ν

(
−κ2tν

)
. (F.54)

Using the Mellin transforms [Mainardi et al. (2003)] derived the

following integral formula,

IMν(x, t) =

∫ ∞
0

IMλ(x, τ) IMµ(τ, t) dτ , ν = λµ . (F.55)

Special cases of the Wright IM-function are simply derived for

ν = 1/2 and ν = 1/3 from the corresponding ones in the complex

domain, see Eqs. (F.16)-(F.17). We devote particular attention to

the case ν = 1/2 for which we get from (F.16) the Gaussian density

in IR,

IM1/2(|x|, t) =
1

2
√
πt1/2

e−x
2/(4t) . (F.56)

For the limiting case ν = 1 we obtain

IM1(|x|, t) =
1

2
[δ(x− t) + δ(x+ t)] . (F.57)
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F.6 Notes

In the early nineties, in his former analysis of fractional equations

interpolating diffusion and wave-propagation, the present author, see

e.g. [Mainardi (1994a)], introduced the functions of the Wright type

Fν(z) := W−ν,0(−z) and Mν(z) := W−ν,1−ν(−z) with 0 < ν < 1, in

order to characterize the fundamental solutions for typical boundary

value problems, as it is shown in Chapter 6.

Being then only aware of the Handbook of the Bateman project,

where the parameter λ of the Wright function Wλ,µ(z) was erro-

neously restricted to non-negative values, the author thought to have

originally extended the analyticity property of the original Wright

function by taking ν = −λ with ν ∈ (0, 1). So he introduced the

entire functions Fν and Mν as auxiliary functions for his purposes.

Presumably for this reason, the function Mν is referred to as the

Mainardi function in the treatise by [Podlubny (1999)] and in some

research papers including [Balescu (2007a)], [Chechkin et al. (2008)],
[Germano et al. (2009)], [Gorenflo et al. (1999); (2000)], [Hanyga

(2002b)], [Kiryakova (2009a); (2009b)].

It was Professor B. Stanković, during the presentation of the pa-

per [Mainardi and Tomirotti (1995)] at the Conference Transform

Methods and Special Functions, Sofia 1994, who informed the au-

thor that this extension for −1 < λ < 0 had been already made by

Wright himself in 1940 (following his previous papers in the thirties),

see [Wright (1940)]. In his paper [Mainardi et al. (2005)], devoted

to the 80th birthday of Professor Stanković, the author used the

occasion to renew his personal gratitude to Professor Stanković for

this earlier information that led him to study the original papers by

Wright and to work (also in collaboration) on the functions of the

Wright type for further applications.

For more mathematical details on the functions of the Wright

type, the reader may be referred to [Kilbas et al. (2002)] and the ref-

erences therein. For the numerical point of view we like to highlight

the recent paper by [Luchko (2008)], where algorithms are provided

for computation of the Wright function on the real axis with pre-

scribed accuracy.
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Furthermore, from the stochastic point of view, the Wright M -

function emerges as a natural generalization of the Gaussian density

for time-fractional diffusion processes. In fact, when these self-similar

non-Markovian processes are characterized by stationary increments,

so that they are defined only through their first and second moments,

which indeed is a property of Gaussian processes, the Wright M−pdf
plays the main role as the Gaussian. Thus, such a class of pro-

cesses, denoted as generalized grey Brownian motion, generalizes the

Gaussian class of the fractional Brownian motion and covers stochas-

tic models of anomalous diffusion, both of slow and fast type. See

for details [Mura and Mainardi (2008)], [Mura and Pagnini (2008)],
[Mura et al. (2008)] and the recent tutorial survey by [Mainardi et al.

(2010)].
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